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Gauge invariant wave mechanics and the 
Power-Zienau-Woolley transformation 

R G Woolley 
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, UK 

Received 19 July 1979 

Abstract. The wave mechanical formulation of quantum electrodynamics is investigated in 
an explicitly gauge invariant form and this leads to the connection between manifest charge 
conservation and the Power-Zienau-Woolley transformation. 

1. Introduction 

The existence of gauge transformations in electrodynamics has held a special fascina- 
tion ever since the first quantum mechanical discussions of gauge invariance (Dirac 
1931). In a quantum theory, the gauge symmetry implies a superselection rule that 
explains the empirical fact that charge cannot be created or destroyed, i.e. matrix 
elements connecting states belonging to different charge eigenvalues necessarily vanish 
(charge conservation). Manifestly gauge invariant formulations of relativistic QED have 
been proposed by many workers (Dirac 1955, Mandelstam 1962, Goldberg 1965, 
Bialynicki-Birula 1970, Menikoff and Sharp 1977) and in that context the subject of 
gauge invariance has been much studied. At the same time non-relativistic QED, which 
deals with the interactions between quantised radiation and atoms (molecules), has 
become a topic of renewed interest largely because of the developments in laser 
spectroscopy and the experimental realisation of a wide range of multiphoton proces- 
ses. Manifest covariance is not possible here and non-relativistic QED is usually 
formulated in wave-mechanical language i.e. in the canonical formalism, with the 
evolution of the system described by the Schrodinger equation, 

ih(ap/at) =AT. (1.1) 

The Hamiltonian operator fi for a closed system of atoms and radiation can be 
decomposed into three parts, 

(1.2) fi = fiatom + g i n t  + g r a d ,  

and there is considerable freedom in the choice of these three terms consistent with a 
total Hamiltonian that describes a definite physical system, not least becaye of the 
gauge symmetry. The connection betyeen the Coulomb gauge Hamiltonian H, and the 
generalised ‘multipole’ Hamiltonian l? is given by means of a path-dependent unitary 
transformation. This is the Power-Zienau-Woolley transformation (Power and Zienau 
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1959, Woolley 1971, Babiker eta1 1974) for which the transformation operator has the 
form 

fi = exp - d3x#(x). d(x)], V. d(x)  = 0 G I  
and one then has a = &torn + a? +&ad 

- - f iatom + f i i n t  + f i r ad  

with 
f i r a d  - - f i f i f a d f i - 1  

f i a tom = f i f i ; tomfi- l  

but 
h i n t  + fi&;tfi-l 

(1.3) 

because 
Woolley 1978), and 

is not invariant under the action of fi ([& fi] f 0) (Healy 1977, Healy and 

I Q )  = OpPJ. (1.9) 
The non-locality of fi arises from the ‘polarisation’ field $(x) which is a solution of the 
linear equation 

v . B ( x )  = +(x) (1.10) 

where @(x) is the charge-density operator. One can use the constraint (Woolley 1974) 

as a gauge condition (choose d(x )  orthogonal to #(x)), and in that way one can set up 
the canonical formalism with the Hamiltonian fixed, but with the non-locality 
incorporated in the associated Poisson-bracket algebra of the dynamical variables: this 
approach can also give the usual Coulomb gauge theory by choosing the polarisation 
field #(x) in (1.11) to be purely longitudinal. 

The aim of this paper is to investigate the gauge invariant formulation of wave 
mechanics starting directly from the canonical equations and thus show how the 
Power-Zienau-Woolley transformation emerges in a natural way. We shall see that the 
requirement that the quantum mechanical formalism be gauge invariant forces the 
result that gauge invariant wavefunctions necessarily contain the non-local phase fi, 
equation (1.3), multiplied into a gauge-dependent wavefunction, so that the usual 
theories involving gauge-dependent quantities can be obtained by invoking equation 
(1.11) with specific choices for P ( x )  as a (gauge) condition on the vector potential 
(fi+ 1). 

2. The canonical equations 

The classical Hamiltonian may be obtained from the Lagrangian for a closed system of 
charged particles and the electromagnetic field using a familiar argument (Woolley 
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1975), and we only quote the final equations from which the redundant conjugate field 
variables (4  (x), .rro(x)) have been eliminated. The Hamiltonian takes the familiar form, 

where Pi is the canonical momentum conjugate to qi, n ( x )  is the field variable conjugate 
to the vector potential A(x), and the motion generated by H is subject to a non- 
integrable equation of constraint 

R(x) = p ( x )  +v  . n ( x )  = 0. (2.2) 

The = sign is Dirac’s (1952) ‘weak’ equality symbol. The Poisson-bracket of H and 
R(x) vanishes strongly 

{H, .n(x)l = 0 (2.3) 

and so R(x) is recognised as a symmetry of the system-it is the generator of gauge 
transformations. Since n ( x )  is essentially the electric field strength ( n ( x )  = - E & ( x ) )  

the equation of constraint, when interpreted as a ‘strong’ i.e. ordinary equation, 
provides the Maxwell equation relating the sources to the longitudinal electric field. 
The magnetic field B ( x )  is related to the canonical variable A(x) by B ( x )  = V X A(x), 
which implies the second Maxwell equation V . B ( x )  = 0, and the remaining two 
Maxwell equations emerge from the equations of motion. The dynamical variables 
satisfy canonical (local) Poisson-bracket relations. 

with all other brackets zero, 

3. Quantisation 

The formal quantisation of the classical canonical scheme summarised in 0 2 follows the 
usual lines with the Poisson-bracket algebra reinterpreted as a commutator algebra 
between operators, 

and fi and h(x)Aare operators expressed in terms of the fundamental canonical 
operators (di, & A(x), &(x)). This prescription leads to a Heisenberg representation 
with a state vector fixed in time, and the dynamics described by the coupled equations of 
motion for the operators, provided only that we can find a consistent interpretation of 
the classical equation of constraint (2.2). It is convenient to pass to a Schrodinger 
representation in which the operators have no explicit time dependence, and the time 
evolution of the system is described by the Schrodinger equation 

ih a lq , ) /a t  = (3.3) 

The equation of constraint can be handled in two ways: one obvious procedure is to 
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require that the physical solutions of equation (3.3) be those for which 

h(X)IW") = 0 (3.4) 
so that the Maxwell equation holds as a condition on the physical states. This procedure 
is not usual in non-relativistic QED; rather it is customary to impose a definite gauge 
condition on the vector potential, and then look for the conditions that allow one to 
interpret the constraint equation 0 as a strong i.e. ordinary equality (Dirac 1952). In 
the quantum theory we would then have 

Q x )  = 0 (3.5) 
holding as an operator identity. We have previou$y shown how the gauge condition 
(1.11) with special choices of the polarisation field P ( x )  lead to the Coulomb gauge and 
'multipole' Hamiltonian theories (Woolley 1971, 1974, 1975). In the present context, 
however, it is of interest to discuss the constraint equation (3.4) which, written out in 
full, is 

v . h(x)+$(x)IP,,) = 0. (3.6) 
Let us choose a representation that is diagonal in the particle coordinates {di}, so that we 
can replace the operator $(x) by the c-number expression p ( x ) ,  the classical charge 
density. If we now use equation (1.10) we can write 

(3.7) v * {&(x) - P(x)}lW,) = 0 
where P(x)  is a function of the particle coordinates but has no dependence on the field 
potential operator d(x).  In general the physical solutions of the Schrodinger equation 
(3.3) cannot be expected to be eigenfunctions of h(x) with eigenvalue P ( x ) :  however, 
equation (3.7) will be satisfied if we can write 

%Wn) =P(x)lW,,)+ T"[A(X)l  (3.8) 

v . T,,[A(x)] = 0. 

where T,, a functional of A(x), is transverse, i.e. 

(3.9) 
We use square brackets to indicate functional dependence. According to the com- 
mutation relation (3.1), h ( x )  can be represented as a functional derivative operator, 

&(x) + -ih s / ~ A ( x ) ,  (3.10) 

and so equation (3.8) can be written as 

{s/sA(x) - i ~ ( x ) / t t } ~ ~ [ A ( x ) ] =  i ~ , , [ A ( x ) l / ~  (3.11) 
or 

where 

$[A(x)] = (i/h)T,,[R(x)] exp( -(i/h) d3x'P(x') .  A(x')). (3.13) 

The requirement that #(x) be the functional derivative of the expression in braces in 
(3.12) strongly restricts the form of the functional T,,, for if we write (3.12) in the form 

(3.14) $[A (x)] = s V[A (x)]/SA (x) 
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then we must have 

Ss^[A(x)]/SA(y) = &A(y)]/SA(x) 

(the integrability condition), and this requires that 

2799 

(3.15) 

T,[A(x)] = t , , (A(x))  exp d3x’ P(x’)  .A(,’)) (3.16) 

where t ,  is a transverse vector function of A(x). Thus we must have 

?,[A(x)] = exp( +(i/h) I d3x’ P(x’ )  . A(x’)) [ &X)  

Sd’(x). t,(A’(x)> (3.17) 

d3x’ P(x’)  A ( X ’ ) ) @ n ( { q i } ,  A(x)) (3.18) 

in an obvious notation (cf equations (1.3) and (1.9)). In the next section we shall study 
the gauge symmetry and show explicitly that gauge-invariant wavefunctionals have the 
form of equation (3.18). 

4. Gauge symmetry 

In this section we investigate the gauge symmetry of the Hamiltonian implied by the 
commutator 

[e, h(x)] = 0. (4.1) 

In order to construct a unitary gauge transformation operator we integrate h(x) against 
a suitably smooth test function f ( x ) ,  so that 

h[f] = I d3x h ( x ) f ( x )  

= m- m f l  
where 

$[Vf] = [ d3x &(XI. V f ( x ) ,  (4.5) 

after an integration by parts. Since h(x) is Hermitian we can construct a unitary 
operator 8[f ] ,  

 VI= exp(ih[fl/h), (4.6) 

m&l= 4 f +  gl  = &14f1 ,  

with the multiplication law of an Abelian group, 

(4.7) 

that is isomorphic to U(1), the unitary unimodular group of complex numbers. If we 
apply 6 to the basic canonical operators we see that di and &(x) are invariant since they 
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commute with @x), but that 

In view of these equations we have 

GV1 
f i ( { f i i i ) ,  { B i ) ,  [d(x>19 [&(x)I) - fit({&), { B ~ I ,  [Af(x)19 [ ~ ’ ( x I I )  

E f i ( { f i i i ) ,  {ai), [ A ( ~ ) I ,  [&(x)I) (4.10) 

consistent with (4.1). A general wavefunction 4 that is not subject to the constraint 
equation (3.4), however, is not invariant: if we choose a ‘coordinate’ representation for 
the particle and field variables, we easily compute the transformed wavefunction 4; to 
be 

(4.1 1) 

in terms of the transformed yector potential A’(x), equation (4.9). These equations 
justify our interpretation of G[f] as the gauge transformation operator. 

Instead of working with gauge-dependent wavefunctions we may insist that the 
formalism should be based solely on manifestly gauge invariant quantities, since all 
physical quantities are gauge-invariant. Wavefunction: that are invariant under the 
action of &[f] may be constructed as follows. Let U[P] be a unitary operator, 

fi[fi] = exp((i/h)d[fi]) (4.12) 

where 

A[#] = d3xfi(x) .  A(x) (4.13) 

for some vector field f i ( x )  which is to be determined (for simplicity, the notation here 
anticipates the final result). If we define 

14[@1> = fi[fill4> (4.14) 

where the wavefunctional 14) is a functional of the vector potential d(x )  in the same 
gauge as in the integral (4.13), then 4[fi] will be 8auge-inva;iant provided that the 
gauge symmetry operator &[f] acts trivially on +[PJ i.e. if $[PI is a representation of 
the gauge group with character + 1. The vector field P ( x )  is thus to be determined by the 
requirement that 

4fIl4[fil>= 14[fil>, (4.15) 

so that using (4.14) we must have 

(&[f]fi[P]- O[fi])I4) = 0 (4.16) 

for any 14) calculated in the gauge of the vector potential d(x) .  Now according to 
equations (4.2)-(4.5), O[f] consists of the sum of two commuting operators and we may 
write 
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fi[j] must therefore be a solution of the operator equation, 

exp(- ( i /~)&[~f l ) f i [B]  = exp(-(i/~)fi[fl) fi[B]. (4.18) 

If we combine equations (3.10) and (4.18) and note that &[Vf] generates a ‘translation’ 
of Vf on d(x), we obtain 

d[B]-Vf[B] = -fi[f]+d[B] (4.19) 

which gives the following condition for P(x) ,  

I d3x P(x) . V f ( x )  - d3x E ( x ) f ( x )  = 0. (4.20) 

Thus after an integration by parts and the neglect of surface integral we see that P(x) 
satisfies an inhomogeneous linear differential equation at all points x, 

(4.21) 

this is the defining equation for the ‘polarisation’ field &x), (l.lO), originally intro- 
duced into non-relativistic QED by analogy with classical dielectric theory (Power and 
Zienau 1959). The gauge-invariant wavefunction (4.14) is of exactly the same form as 
equation (3.18) for the physical states on which Maxwell’s equation eOV.  E ( x )  = p ( x )  
holds, and (4.14) is the same equation as the Power-Zienau-Woolley transformation 
equation (1.9) if 14) and fi[B] are evaluated with the Coulomb gauge vector potential 

I 
v . B ( x )  = -p^(x): 

dc. 

5. Physics of the Power-Zienau-Woolley transformation 

In the previous sections we have shown that the form of gauge-invariant wavefunc- 
tionals is determined entirely by the structure of quantum electrodynamics once gauge 
invariance is demanded, and the Power-Zienau-Woolley transformation is a device for 
transforming the usual (gauge-dependent) Coulomb gauge theory into this explicitly 
gauge-invariant form. It is thus of interest to enquire what physical interpretation can 
be given to gauge-invariant wave mechanics: the following discussion focusses on the 
fundamental law of nature that electrical charge cannot be created or destroyed. The 
conventional motivation for the Power-Zienau-Woolley transformation, namely that it 
displays atomic (molecular) multipoles explicitly in the transformed Hamiltonian, is 
gratuitous, not least because a separation into electric and magnetic multipoles cannot 
be carried out in a unique or invariant fashion. 

In order to take account of charge conservation explicitly in the description of 
electrodynamic processes one must consider the additional currents that flow during 
every experiment in which beams of charged particles are involved. These additional 
currents, which flow between the source and the detector of charged particles, have 
been called compensating currents because they compensate for the charge lost by the 
source and gained by the detector (Bialynicki-Birula and Biaiynicki-Birula 1975). 
Taking into account the compensating currents one simply has the separation and 
subsequent recombination of charges instead of ‘creation’ and ‘destruction’, and this is 
in full accord with the observation that the natural state of all matter under terrestrial 
conditions is an electrically neutral state. 

The simplest approach to the incorporation of compensating currents in quantum 
electrodynamics is to ignore all dynamical aspects of these currents so that the 
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compensating current can be described by a set of four given c-number functions, J ” ( z )  
(EL = 0, 1 , 2 , 3 ) ,  of the space-time coordinates ( z  = x, t). The propagator describing the 
creation of electrons from the vacuum at the points yl,  . . . , y,, and their subsequent 
annihilation at xl,. . . , x,, (or the converse interpretation for positrons) in either a 
prescribed c-number or fully quantised electromagnetic field, described by a field 
potential A,(z )  (A,  = A, C$), can be written symbolically as 

T[x1, * * xfl, yfl, * * * Ylldl. (5.1) 
This propagator depends on the gauge of the four-potential A,(z ) :  it can be shown that 
a propagator that is invariant under gauge transformations of the potentials, 

A, ( z )  -$ A,(z )  +a,A(z), (5.2) 
can be defined using the compensating current J ” ( z ) ,  

T[xl, . . . x,,, yn,  . . . y l / d ,  JI = exp (ilh) d4z J N ( z ) A , ( z ) )  T[x l ,  . . . x,,, y n ,  . . . y l l ,  

(5.3) 
( I  

provided that .P ( z )  satisfies the following inhomogeneous continuity equation 
(Biaiynicki-Birula and Bialynicki-Birula 1975), 

n 

~ J ” ( Z :  XI,. . . x,,, ~ 1 , .  . . y , , ) = e  ,E { s 4 ( ~ - y i ) - s 4 ( ~ - x i ) ) .  (5.4) 
1=1 

In the wave-mechanical formulation of electrodynamics we work with dynamical 
variables on a space-like three-dimensional surface in space-time and see how they are 
connected with the dynamical variables on a neighbouring surface: the connections 
constitute the equations of motion. For simplicity consider the electrodynamics of a 
single charged particle for which the particle-field Hamiltonian is I? (cf 0 1). The 
Schrodinger equation (1.1) describes the change in the state CC, in the infinitesimal time 
At as due to the action of a unitary operator exp(-iI?At/h). One can also ask, if 
Y(xl, t i )  is the wavefunction at xl, t l  what is the wavefunction at time t2 > t l? This is 
obtained from the propagator T, 

*(x2, t 2 )  = I d3x1 ~ ( x ~ ,  t2; xl, tl)Y(xl, tl) ( 5 . 5 )  

(5.6) 

T ( z z ,  21) has a bilinear representation in terms of the eigenfunctions of fi (Feynman 
1949) 

where T is the causal Green function for the Schrodinger equation, 

[iri(a/at2) - f i 2 ] ~ ( z z ,  zl) = ihs4(z2-z1). 

[f Yyr,(xJ*,,(xl)* exp[-(i/Wfl(t2- t d l  t2 > tl 

t z  < t l .  
T ( Z 2 , Z l )  = (5.7) 

In these equations the state vectors Y are to be understood as functionals of the 
electromagnetic field variables, as well as functions of the particle variables. We may 
choose the wavefunctions in equation (5.7) to be gauge invariant wavefunctions 
carrying the phase-factor 0 as in 0 4, so that for example 

V n ( x 2 )  = exp( (i/W I d3xP(x) .  a(x))C$,,W (5.8) 
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(5 .9)  

and hence the gauge-invariant propagator T carries the phase 

exp( (i/h) d3x J ( x )  . A (x)) (5.10) 

(5.11) 

(5.12) 

This is the expected result, since the construction of the Hamiltonian for electro- 
dynamics involves the elimination of the zero-component of the four-potential A, (i.e. 
the scalar potential A.  = c$), and hence we expect the phase-factor in the propagator for 
the Schrodinger equation, due to a compensating current of electrons, to be of the form 
(5.10) with no time-integration, and with the vector field J ( x )  satisfying the spatial part 
of the inhomogeneous continuity equation, (5.4), 

Recall that the divergence of a vector field is interpreted physically as the outward flux 
of the field from a volume V in the limit V + 0, and this observation motivated the 
interpretation of the kernel J ( x )  as an electrical current between the points { y i } ,  {x i } .  

At this point we may make contact between the idea of compensating currents and 
the analogy Power and Zienau (1959) made with classical dielectric theory when they 
introduced the ‘electric polarisation field’ P(x)  through equations (1.3), (1.10) in their 
discussion of non-relativistic QED. If we consider a volume V in the dielectric, the net 
charge Sq that flows out of the volume across an element d S  of its surface is P. d S  (i.e. 
the flux of P(x)) ,  so that the total flux Q flowing out of V is given by: 

Q = I  S q = I  P.dS.  
S S 

(5.14) 

In order to maintain electrical neutrality we must have a charge -Q remaining in the 
volume V. If p ( x )  is the volume density of the charge remaining within this volume then 

-Q=1vp(x )d3x=-  (5.15) 

by Green’s theorem, and since this is true for all V we must: have 

v . P ( x )  = -p (x) (5.16) 

at all points x, i.e. equation (1.10). Similarly, integration of equations (5.12), (5.13) 
over a volume containing the points ( x l ,  x2), (xi,  y i )  respectively yields zero, consistent 
with the law of conservation of charge. The Power-Zienau-Woolley transformation 
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deals with the wavefunctional 1I’ at a given instant in time, and gives 1I’ a phase that 
ensures the correct form for the compensating current J ( x ) ,  which in turn makes explicit 
local conservation of charge. 

The form of the solutions of equation (5.16) is well known. The purely longitudinal 
solution P(x)” describes the Coulomb field of the charges: on the other hand, the 
Power-Zienau-Woolley transformation is generally discussed in terms of line integral 
representations of the polarisation field (Healy and Woolley 1978), in which each 
charged particle has its own integration path. One may ask whether the different 
possible choices of polarisation field P ( x )  have any physical content. If one confines 
attention to the electrodynamics of a specified number of charges and electromagnetic 
field considered as a closed system with Hamiltonian fi, equation (1.2), there is no 
reason to distinguish between the different phase-factors fi, equations (4.12) and 
(4.13), that can be given to gauge-invariant wavefunctions associated with a system with 
charge density p (x). However, the discussion of compensating currents and charge 
conservation at the start of this section indicates that in principle the ‘isolation’ of such a 
system is not possible quite apart from practical considerations. The experimental 
arrangement or apparatus used in the measurement must therefore be described by a 
Hamiltonian operator AC which is to be added to the system Hamiltonian fi. We 
ignore any dynamical consequences of the compensating current ( J ( x )  is a c-number 
vector field) which means that we are dealing with the limit of A + 0, and we can suppose 
that the gauge-invariant quantum states associated with fi give a satisfactory descrip- 
tion. In this case only the symmetry of the perturbation operator A is of importance, 
and we simply use wavefunctionals *(x) of the form (P 4) 

*a (x) = e x p ( i d W 4  (XI (5.17) 

pa = d3x’ P(x’)  . R(x’) J (5.18) 

with the phase pa chosen so as to match the symmetry of e. Thus in principle one should 
expect the appropriate compensating current, and thus also the polarisation field P ( x )  
(e.g. through the choice of paths C) to be chosen for every experimental situation. 
Accorqing to equation (1.6) the two commonly used radiation field Hamiltonians 
Z?7d,l?ad, that describe the ‘free field’ in perturbation theory, are related by the 
Power-Zienau-Woolley transformation, and so the vectors in their associated Fock 
spaces are of the form (Healy 1977, Healy and Woolley 1978), for photons with 
momentum ki, polarisation A{, (or &, hi) 

(5.19) 

(5.20) 

with fi given by equation (1.3), and these photon states may be thought of as being 
physically distinct by virtue of the above ‘broken symmetry’ argument. 
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